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NOTICES

Disclaimers

The findings in this report are not to be construed as an
official Department of the Army position, unless so desig-
nated by other authorized documents.

The citation of trade names and names of manufacturers in
this report is not to be construed as official Government
indorsement or approval of commercial products or services
referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not
return it to the originator.
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adequately assess the effect of atmospheric aerosols on electro-optical and
high energy laser systems, particulate size distributions must be measured.

for these measurements. This report presents response calculations for a com-
mercially available light-scattering aerosol particle counter (the Particle

Measurement Systems Classical Scattering Aerosol Spectrometer) used by the ?OD
community for such measurements. The calculations are for spherical particies

Single particle light scattering aerosol particle counters offer some advantages

i

w s :rn lm EOITION OF ! NOV 65 (S OBSOLETE

/ o
/ g 77

> g

SECURITY CLASSIFICATION GF THIS PAGE (When Data Entered)




SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (cont)

and consider the wavelength of the laser source and the geometry of the 1light-
collecting optics. The results show a strong dependence of the response upon
the particle refractive index and multivalued response for particles with
diameter qreater than 0.8 micrometer. The problem of deconvolution of size
distribution information from measurements taken with this instrument is addres-
sed. Several examples of size distribution measurements of atmospheric fog and
haze are given to illustrate the significance of the results.
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SUMMARY

Mie theory response calculations presented for the Particle Measurement
Systems Classical Scattering Aerosol Spectrometer show the particle size
resolution for spherical particles of unknown composition to be less than
advertised for aerosols with refractive indexes in the range of those of
atmospheric aerosols. However, for spherical particles of known composi-
tion, these results can be used to group and redefine the particle size
channels to avoid regions of multivalued response and thereby optimize
the size resolution of the instrument. For particles of mixed composition,
only a small number of size channels are justified. Field measurements
on atmospheric fog and haze suggest that the response calculations apply
to the instrument, although controlled laboratory measurements on uniform
aerosols of known composition and size are required for a definitive con-
firmation of the theoretical response calculations shown here.
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INTRODUCTION

Light scattering aerosol particle counters are used for determination of
sjze distribution and concentration of aerosol particles. These devices
work on the principle that as aerosol particles flow through an illuminated
volume, light scattered into a particular solid angle by a single particle
is measured photoelectrically and is used to determine particle size by
electronically classifying response pulses according to their magnitude.
Determination of particle size from the response is difficult because of
the complicated dependence of the response on particle size, particle
index of refraction, the lens geometry of the counter optical system, and
for instruments with broadband sources - the phototube spectral sensitiv-
ity. These difficulties have been studied previously [1-4] for several
aerosol counters including the commercially available Climet, Bausch and
Lomb 40-1A, Royco 245, Royco 220, Royco 218, and the Jacobi.

The purpose of this report is to present new light-scattering calculations
for the response of an instrument that has recently become commercially
available: the Particle Measurement Systems, Inc., Classical Scattering
Aerosol Spectrometer (CSAS).

COUNTER RESPONSE CALCULATION

The theoretical response of the CSAS to a particle of a particular size
and refractive index can be expressed as a cross section per particle
for 1ight scattered into the particular solid angle of the instrument
collecting optics. This respcnse is given by

g=22°
/ ;—; [i;(m, x, 8) + i2(m, x, 8)] sin o d o
6=4°

where » is the wavelength of the light and i;(m, x, 8) and ix(m, x, 6)
are the angular intensity functions. The above expression integrated
over all thetas yields the total scattering cross section. The angular
intensity functions depend on m, the complex refractive index of the
particle; the particle size parameter x defined as the ratio of the
particle circumference to the wavelength; and the scattering angle o

as measured from the direction of forward scattering. The light-
collecting solid angle for the CSAS instrument has axial symmetry and

is for values of theta from 4° through 22° from the directign of forward
scattering. The wavelength is that for a He-Ne laser, 6328A.

It is well known that at a particular scattering angle the scattergd
intensity is an oscillatory function of size parameter so that a single




measurement may not yield a single value of particle size. However

hope is that averaging of these intensity functions over a consideréb%ge
range of scattering angles will damp out the oscillations to give a
single-valued response curve. It is desirable that the response curves
be neqr]y the same for materials of different refractive index, since in
practice the particle composition may not be known.

Responsg ca!culations for the CSAS instrument for water particles with
refragt1ve index 1.33-0i, for ammonium sulfate particles with index
1.5-01, and for absorbing atmospheric dust particles with indexes 1.50-0.01i
and 1.5-0.05i are shown in Figure 1. The results show a strong dependence
of the response upon the particle refractive index and multivalued
response for particles with diameter greater than about 0.8 micrometer.
The calculated response is obviously sensitive to the particle refractive
index for indexes in the range of those of atmospheric aerosols. The
seriousness of the multivaluedness is reduced if only a small number of
particle size channels are utilized in the multichannel analyzer. Of
course, the size resolution of the instrument is reduced accordingly.
Based upon these calculations for the range of particulate refractive
indexes considered here, the instrument size resolution is 0.9 te 1.6
microns for particles of 1-micron diameter, 3 to 9 microns for particles
of 4-micron diameter, and 7 to 17 microns for particles of 10-micron
diameter. For comparison, the advertised resolution is +10% for parti-
cles less than 20-micron diameter and +2 microns for particles larger

than 20-micron diameter.

The manufacturer's calibration for our particular CSAS instrument is
given in the table. The corresponding discriminator Tevel settings are
indicated by tick marks in Fiqure 1. There are 15 particle size channels
for each "range" of the instrument. Pulse height channels 1, 5, 10, and
15 are Jabeled between the appropriate tick marks. Changing range is
merely an adjustment of an amplifier gain and so has the effect of shift-

ing the range of sensitivity.

Even if the particulates measured are all of the same known composition,
there are - on some ranges - discriminator levels set in regions of
multivalued response. Nevertheless, size distribution information for
such a polydispersion of spherical particles can be determined by reducing
the number of channels to avoid these regions. The effects of sugh a
grouping of the particle size channels on the inferred particle size
distribution for measurements of atmospheric fog and haze under the
assumption that the particles are water droplets are presented in the

next section.

SIZE DISTRIBUTION MEASUREMENTS OF ATMOSPHERIC
FOG AND HAZE WITH THE CSAS

mposition are measured with the CSAS,

If spherical particles of known co ;
be obtained from the theoretical results

size distribution information may




PARTICLE SIZE CHANNEL WIDTHS (Diameter in um)
FOR THE CSAS-100,
AS SPECIFIED BY THE MANUFACTIRER

Instrument Range

Channel 1 2 3 4
1 2-4 1-2 0.5-1 0.4-0.65
2 4-6 2-3 1-1.5 0.65-0.9
3 6-8 3-4 1.5-2.0 0.9-1.15
4 8-10 4-5 2.0-2.5 1.15-1.4
5 10-12 5-6 2.5-3.0 1.4-1.65
6 12-14 6-7 3.0-3.5 1.65-1.9
7 14-16 7-8 3.5-4.0 1.9-2.15
8 16-18 8-9 4.0-4.5 2.15-2.4
9 18-20 9-10 4.5-5.0 2.4-2.65
10 20-22 10-11 5.0-5.5 2.65-2.9
1 22-24 11-12 5.5-6.0 2.9-3.2
12 24-26 12-13 6.0-6.5 3.2-3.5
13 26-28 13-14 6.5-7.0 3.5-3.8
14 28-30 14-15 7.0-7.5 3.8-4.1
15 30-32 15-16 ’ 7.5-8.0 4.1-4.4




presented here by grouping the particle size channels to avoid problems

of multivalued response. This channel redefinition for water particles

is shown along with the response curve in Figure 2. The heavy tick

marks indicate the redefined channels. The light and heavy tick marks
together indicate the advertised channel discriminator levels and are
identical to those in Figure 1. The channels are redefined with less

size resolution than the response curve dictates because in practice
statistical spectra broadening effects result in some channel cross sen-
sitivity. Specifically, even a perfectly monodisperse aerosol results in
a range of pulse heights, and identical particles are not counted entirely
in one particle size channel. Therefore, setting discriminator Tevels
near regions of multivatued response has been avoided. The recalibration
reduces the number of channels for each range from 15 to 7. The redefined
channels are not of equal width. 5

The effect of this recalibration on size distributions of atmospheric fog
and haze inferred from measurements with the CSAS is shown in Figures 3
through 13. These particulate size distributions are shown to corroborate
our recalibration. According to the response calculation, the manufacturer-
advertised calibration may lead to artificial maxima in the inferred size
distribution in regions of multivalued response and relative minima be-
tween these regions. In regions of multivalued response, particles with

a relatively large range of sizes produce response pulses in a small

range of pulse heights; whereas, between regions of multivalued response,
particles with a relatively narrow range of sizes produce response pulses
in a comparable range of pulse heights. Therefore, if the manufacturer's
calibration is used, distortion of the real size distribution of a poly-
dispersion of fog or haze to be inferred from measurements with this in-
strument would be expected. Such artifacts in the distributions would be
most noticeable in the form of relative maxima in regions of multivalued
response (i.e., at 0.6-1.3, 1.6-2.2 micron radii) and relative minima be-
tween these regions (i.e., at about 1.5 micron radius). These distortions
could be seen easily only if the pulse height discriminators are set with
sufficient resolution.

Examination of the manufacturer calibration-derived size distributions in
Figures 3 through 9 show evidence of these artifacts. However, they are
not evident in Range 1 data in Figures 10 and 11 since the pulse height
discriminators on this setting of the instrument are not set sufficiently
close to resolve them. The fact that these relative maxima and minima
occur for a variety of very different size distributions suggests that
they are artifacts resulting from the Mie resonances in our calculation
of the instrument response, since they are not evident in the size distri-
butions determined from the recalibration. It is noteworthy that the
overall form of size distribution inferred from the manufacturer calibra-
tion and from our redefined calibration is in agreement. Such would not
be the case for absorptive particles.




This recalibration scheme has also been applied to a similar model of

the CSAS owned by the Night Vision Laboratory which is identical to the
instrument studied here except that the pulse height discriminator levels
are set differently. Some results of the recalibration on size distribu-
tion measurements on atmospheric fog are shown in Figures 12 and 13. The
smooth curves are those obtained with the manufacturer calibration and
the dashed curves with our recalibration scheme. Measurements made on
the four range settings are plotted on one figure since they were made
sequentially during relatively stable fog conditions. It is suggested
that the plateaus in the manufacturer calibration-inferred size distribu-
tion at approximately 1 and 2 micron radius are a result of the multi-
valuedness in the response curve in Figure 2.

The effect of this recalibration on particulate extinction cross sections
calculated from the size distribution data for 1, 4, and 10 micron radia-
tion depends on the size distribution and on the particular range that
the instruments are set on. For a variety of fog and haze measurements,
however, the extinction calculated via the redefined calibration versus
the manufacturer calibration generally differs by a factor of 50% or less
at 1 micron and by a factor of 2 or less at 4 and 10 microns.

The manufacturer has made two comments bearing on the results presented
here. One is that the classical scattering instrument (CSAS) is not
always produced with the degree of pulse height resolution capable of
the particular models studied here. For these instruments the multi-
valued response problem may be less important, depending on where the
discriminator levels are set. Secondly, the manufacturer says that
since the lasers in the instruments operate in multimode, the phase
shifts through the beam cause smoothing of the resonances 1in the re-
sponse curves, as the scattering process is no longer described exactly
by Mie theory. The authors do not think this second comment has validity,
although controlled laboratory measurements on uniform aerosols of known
composition and size are vequired for a definitive confirmation of the

Mie theory response calculations shown here.
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Figure 1. Response calculations for the Particle Measurement

Systems CSAS instrument for water particles with
refractive index 1.33-0i, ammonium sulfate particles
with refractive index 1.50-01, and absorbing atmo-
spheric dust with indexes 1.50-0.011 and 1.50-0.051.
The tick marks indicate the pulse height discriminator
level settings for the instrument. Channels 1, Sy

and 15 are labeled between the appropriate tick marks
for the different range settings of the instrument.
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Figure 2. Response calculations for the Particle Measurement
Systems CSAS instrument for water particles. The
heavy tick marks indicate - for the different instru-
ment ranges - the pulse height discriminator level
settings used in grouping channels to avoid regions
of multivalued response. The light and heavy tick
marks together indicate the manufacturer discriminator
level settings and are identical to those in Figure 1.
Channels 1, 5, and 15 are labeled between the appro-
priate tick marks.
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Figure 3. Particulate size distributions inferred from measurements of
atmospheric fog made with the CSAS using the manufacturer
calibration (solid curve) and the Mie theory recalibration
(dashed curve).
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calibration (solid curve) and the Mie theory recalibration
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